Preview

Sodium Borohydride Reduction of Benzil

Powerful Essays
Open Document
Open Document
1114 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Sodium Borohydride Reduction of Benzil
Sodium borohydride Reduction of Benzil
Introduction:
The Purpose of this experiment is for the students to learn how to use sodium borohydride to reduce benzil to its secondary alcohol product via reduction reaction. This two-step reaction reduces aldehydes by hydrides to primary alcohols, and ketones to secondary alcohols. In order for the reaction to occur and to better control the stereochemistry and yield of the product, the metal hydride nucleophile of the reducing agents such as LiH, LiAlH4, or NaBH4 must be carefully chosen. Being that LiAlH4 and NaBH4 will not react with isolated carbon-carbon double bonds nor the double bonds from aromatic rings; the chosen compound can be reduce selectively when the nucleophile only react with electrophilic carbons.

Figure 1: reduction mechanism for the reaction

In this experiment, the benzil (diketone) is used as the organic substrate. Sodium borohydride, NaBH4 is used as the reducing agent (metal hydride) and ethanol as the solvent. The H- of the NaBH4 reduces one or both carbonyl groups in benzil and then the acidification processes results in a diol or two secondary alcohols as products. If only one carbonyl group is reduced, the product results in a racemic mixture of benzoin. If both carbonyl groups are reduced, the product results in a meso-hydrobenzion or a racemic mixture of hydrobenzion. The goal of the experiment is for the student to reduce benzil and use melting point, TLC, and IR to determine the stereochemistry of the resulting product.

Figure 2: Benzil reduction mechanism:
Key experimental details, observations and results: The initial reaction solution including the 1.011g of benzil and 10ml of 95% ethanol appeared as a yellow liquid. After the solution was heated allowing the benzil dissolved, the solution appeared as a yellow liquid with feather like crystals when cooled to room temperature. The feather like crystals dissolved and the solution became a creamy light yellow liquid after

You May Also Find These Documents Helpful

  • Better Essays

    Abstract: Using hypochlorous acid to convert secondary alcohol called cyclododecanol to the corresponding ketone which is cyclododecanone by oxidation.…

    • 708 Words
    • 3 Pages
    Better Essays
  • Good Essays

    In this experiment, the cyanide ion served three purposes: first of all, it acted as a nucleophile, then it stabilized the intermediate carbanion, and in the end functioned as a leaving group. The Benzoin produced was then in turn purified and used to synthesize Benzil in the next experiment through Copper (II) ion oxidation. The Benzil was obtained by catalytic oxidation of the Benzoin using the Copper (II) ion as the catalytic oxidant. The Benzil produced was then purified and used as the reactants in the third and final experiment of the sequence which was this one, to produce Tetraphenylcyclopentadienone which is a five-membered carboxylic ring. The Benzil was reacted with 1,3- Diphenylacetone to undergo adol condensation and therefore produce Tetraphenylcyclopentadienone. The first step of the reaction to from the Tetraphenylcyclopentadienone requires the loss of -hydrogen to the base, resulting in a negatively charged carbon that bonds with the carbonyl group from the benzil. The bonding then…

    • 608 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    The broad peak at about 3300 in the IR corresponds to the O—H group in the product. The peaks to the right of aro0und 3000 are C—H related, those about 1599 are C—H bends, and the peaks at 1000-1350 are C—O related. The most plausible product seems to be cyclohexanol with a molecular formula of C6H12O.…

    • 348 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    9-Fluorenone Lab Report

    • 1496 Words
    • 6 Pages

    In this experiment a ketone, 9-fluorenone is reduced to and alcohol. The are two possible ways by which this reduction can occur. One is by a catalytic hydrogenation, this uses a catalyst such as palladium or nickel, hydrogen gas, and heat/pressure. This can reduced an alkane to alkene. This catalytic process is preferred in industrial practices because the cost is low in the long run and more importantly there is little to no waste expense. However, hydrogen gas is dangerous due to being very flammable/combustible. Therefore, a reducing agent will be used in this experiment instead. There are multiple types of reducing agents that reduce different types of functional groups and thus selection of the proper reducing agent is crucial.…

    • 1496 Words
    • 6 Pages
    Powerful Essays
  • Better Essays

    The purpose of this experiment was to synthesize the Grignard reagent, phenyl magnesium bromide, and then use the manufactured Grignard reagent to synthesize the alcohol, triphenylmethanol, by reacting with benzophenone and protonation by H3O+. The triphenylmethanol was purified by recrystallization. The melting point, Infrared Spectroscopy, 13C NMR, and 1H NMR were used to characterize and confirm the recrystallized substance was triphenylmethanol.…

    • 5143 Words
    • 21 Pages
    Better Essays
  • Satisfactory Essays

    Then I added 0.10 g of sodium borohydride, after I started to boil the contents of the flask on a warm hot plate for 7 minutes then I left the reaction to calm.…

    • 433 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    In this experiment two solutions were prepared for two kinetic runs. Solution #1 (50%ethanol 50% water) and Solution #2 (40% ethanol and 60% water) was added to another Erlenmeyer flask. Next, 0.10M of NaOH was filled up to the 0.00ml mark in two 50-ml burettes. Placing the flask containing solution 1 on the magnetic stirrer and clamp a burette containing 0.10M of NaOH above the flask. The two kinetic runs will be carried out one after another. A stir bar was placed into the flask containing solution #1 and 3-5 drops of phenolphthalein indicator solution to the reaction flask. To start the reaction, 4.91x10^-3 mol of alkyl halide to the stirring reaction mixture. The timer was started at the instant of this reaction. When enough HCl formed to neutralize the NaOH that was initially added, the pink color turned clear. The time was recorded.…

    • 936 Words
    • 4 Pages
    Satisfactory Essays
  • Good Essays

    This experiments is to find if one substance has alcohols, aldehydes or ketones. If one reactant is alcohol, the color of the reactant will be turned into green when 6 drops of potassium dichromate and 1 drop of concentrated sulfuric acid were added. Also,…

    • 558 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Nucleophilic Hydride Lab

    • 937 Words
    • 4 Pages

    Nucleophilic hydride is unstable by itself so it must be used through a hydride reagent such a NaBH4 or LiAlH4. The hydrogen is more electronegative than boron and aluminum giving it a negative charge. This causes the hydrogen to act like a hydride. This is important because it causes it causes it to be selective. A hydride has a negative charge so it will attack the positive carbon in a carbonyl group. This makes it more useful in synthesis reactions because if a molecule has a carbonyl group and carbon-carbon double bond, it will only attack the polar carbonyl group. LiAlH4 is much more reactive than NaBH4 because Al is more electronegative than boron which forms a stronger dipole making hydrogen more negative making it more nucleophilic. As explained both NaBH4 and LiAlH4 perform the same task, but because of LiAlH4’s higher reactivity they are used in different situations. NaBH4 can be used in alcoholic solvent while LiAlH4 can’t be because it will deprotonate and produce H2. Also, LiAlH4 can reduce ketones, aldehydes, carboxylic acids as well as esters. In contrast, NaBH4’s lower reactivity causes it only effective at reducing ketones, and aldehydes. In this lab NaBH4 will be used, an example of such a reaction using NaBH4 as a reducing agent…

    • 937 Words
    • 4 Pages
    Better Essays
  • Good Essays

    After the sodium benzoate was mixed into the water and the HCl was added, the solution underwent a color change from a clear substance to a white substance. Also, a precipitate began to form. This precipitate was a dry, white solid with a mass of .754 g.…

    • 500 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    Ochem Lab

    • 394 Words
    • 2 Pages

    In this experiment, the secondary alcohol is selected over the primary alcohol. In many cases the primary alcohol can be oxidized all the way to a carboxylic acid. In order to achieve selectivity, sodium hypochlorite is used. It is reacted with acetic acid to form HOCl.…

    • 394 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    Alcohol and Ir Spectrum

    • 1927 Words
    • 8 Pages

    Background: Alcohols are capable of being converted to metal salts, alkyl halides, esters, aldehydes, ketones, and carboxylic acids. In this experiment the conversion from alcohol to alkyl halides was investigated. Alkyl halides are a group of chemical compounds derived from alkanes containing one or more halogens. They are used as flame retardants, refrigerants, propellants, solvents, and pharmaceuticals. As a group, students convert three alcohols to alkyl halides under acidic conditions and record the 13C NMR spectrum in each case. The reaction that takes place in the conversion is a bimolecular nucleophilic substitution, or SN2 reaction. Alcohols do not undergo the same SN2 reactions commonly observed with alkyl halides. There are four aspects that determine the rate of the SN2 reaction: nucleophile, substrate, solvent and the leaving group. This reaction requires a lone pair from a nucleophile to donate an electron-pair in the formation of a chemical bond; it then attacks the bonds to an electrophilic…

    • 1927 Words
    • 8 Pages
    Better Essays
  • Good Essays

    8. (10 points) When (R)-4-bromopentanoic acid, 1, is treated with sodium hydroxide, (R)-4hydroxypentanoic acid, 2, is isolated as the only product. Using curved arrows to represent the movement of electrons, write a mechanism for this reaction that explains the formation of the product with particular attention to its observed stereochemistry.…

    • 880 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Copper

    • 389 Words
    • 2 Pages

    3. In the third decomposition reaction when the solution was heated a blue jelly formed and then a black precipitate formed at the bottom of the beaker.…

    • 389 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    This course provides students with a basic understanding and skills in selected areas of organic chemistry relevant to chemical engineers. It covers modern organic chemistry with emphasis on synthesis, mechanisms, structure and current laboratory techniques. Contents include the basic chemical bonding theory; nomenclature of organic compounds; basic organic reactions; mechanisms of the basic organic reactions; organic synthesis and applications of organic chemistry in industry: polymers, petrochemicals, sugars, proteins and pharmaceutical chemistry.…

    • 1184 Words
    • 5 Pages
    Good Essays